

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF AGRICULTURE AND NATURAL RESOURCE SCIENCES DEPARTMENT OF AGRICULTURAL SCIENCES AND AGRIBUSINESS

QUALIFICATION: BACHELOR OF SCIENCE IN AGRICULTURE						
QUALIFICATION CODE: 07BAGA		LEVEL:	7			
COURSE CODE:	MTA611S	COURSE NAME:	Mathematics for Agribusiness			
SESSION:	June 2023	PAPER:	Theory			
DURATION:	3 Hours	MARKS:	100			

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER(S)	Mr. Mwala Lubinda			
MODERATOR(S)	Mr. Teofilus Shiimi			

INSTRUCTIONS	
1.	ANSWER ALL questions.
2.	Write clearly and neatly.
3.	Number the answers clearly & correctly.

PERMISSIBLE MATERIALS

- 1. All written work MUST be done in blue or black ink.
- 2. Calculators allowed.
- 3. The LAST PAGE has FORMULA.
- 4. No books, notes and other additional aids are allowed.

THIS QUESTION PAPER CONSISTS OF 6 PAGES (including this front page).

QUESTION ONE

[MARKS]

- a. Consider a function, $f(x) = x^2 4x 5$. Find the range when the domain is one and the domain when the range is zero. (4)
- b. Use interval notation to express the domain of the function:

$$g(x) = \frac{2x - 1}{x^2 - 9} \tag{4}$$

- c. Suppose you know that an agribusiness's production can be approximated using a univariate quadratic function with a maxima and roots at x=-10 and x=20. Based on this information answer the following questions below.
 - i. Derive the algebraic equation for the production function. (2)
 - ii. Compute the production function's y-intercept. (2)
 - iii. Compute the range and domain value at the maximum point. (3)
 - iv. Sketch a well labelled graph to represent the production function. On your graph show the roots, y-intercept, and maxima. (5)
- d. A vendor's total monthly revenue is from the sale of x bags potatoes is represented by a function:

$$r = 150x$$

Furthermore, the vendor's total month costs are given by c=100x+3500. Compute, how many bags of potatoes must the vendor sale to break even? (*Hint: break even means revenue is equal to cost*).

TOTAL MARKS

[25]

(5)

-	QUESTION TWO	[MARKS]
a.	Use the Newton's Difference Quotient (or first principle of differentiation) to find the	
	first derivative of the function:	(6)
	$g(x) = x^2 - 4x - 5$	(6)
	To obtain full marks, show all the critical steps in your answer.	
b.	Find:	
	i. $\lim_{x \to 0} \frac{(2+x)^2 - 4}{x}$	(4)
	ii. $\lim_{k \to 6} \frac{\sqrt{k-2}-2}{k-6}$	(6)
c.	Find the equation of a straight-line that is tangent to the curve:	
	$y = \ln(x^2 - 2x + 24)$	(9)
	at $x = 0$.	
TOTAL MARKS		[25]

[25]

TOTAL MARKS

	QUESTION THREE	[MARKS]
a.	Consider the functions, $f(x) = (3x^4 - 5)^6$ and $g(x) = \log_8 x^4$. Find:	
	i. $f'(x)$	(3)
	ii. $g'(x)$	(4)
b.	Find z_x, z_y and z_{yx} , given the function:	
	$z = 3e^{2x}y^2$	(6)
c.	Find the critical points of the function below and test whether it is at a relative maximum, relative minimum, inflection point, or saddle point. Show all your calculations. $z=3x^3-5y^2-225x+70y+23$	(12)

QUESTION FOUR [MARKS]

a. Find:

i.
$$\int_0^1 (3x^2 - x - 2) dx$$
 (3)

ii.
$$\int x^2(x^3+2)dx \tag{5}$$

Suppose an agribusiness's marginal cost function of wheat production is represented
 by:

$$MC = \frac{dc}{dq} = 250 + 30q + 9q^2 \tag{7}$$

where MC is the marginal cost, c is the total cost, and q is the units of output. Find the cost of producing 10 units of output assuming a fixed cost of N\$10,000.

c. To produce 70 tonnes of wheat, an agribusiness wishes to distribute production between its two farms, farm 1 and farm 2. The total cost of wheat production, c, is given by the function:

$$c = 4q_1^2 + 2q_1q_2 + 5q_2^2 + 1000 (10)$$

where q_1 and q_2 are tonnes of wheat produced at farm 1 and farm 2, respectively. How should the agribusiness distributed to production between the two farms to minimize costs? Furthermore, compute and interpret lambda (λ).

TOTAL MARKS [25]

THE END

FORMULA

Basic Derivative Rules

Constant Rule:
$$\frac{d}{dr}(c) = 0$$

Constant Multiple Rule:
$$\frac{d}{dx}[cf(x)] - cf'(x)$$

Power Rule:
$$\frac{d}{dx}(x^{e}) = nx^{e-1}$$

Sum Rule:
$$\frac{d}{dx}[f(x)+g(x)]-f'(x)+g'(x)$$

Difference Rule:
$$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$$

Product Rule:
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) - g(x)f'(x)$$

Quotient Rule:
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) f'(x) - f(x) g'(x)}{[g(x)]^2}$$

Chain Rule:
$$\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$$

Basic Integration Rules

$$1. \quad \int a \, dx = ax + C$$

2.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

$$3. \int \frac{1}{x} dx = \ln |x| + C$$

$$4. \quad \int e^x \, dx = e^x + C$$

$$5. \quad \int a^x dx = \frac{a^x}{\ln a} + C$$

$$6. \quad \int \ln x \, dx = x \ln x - x + C$$

Integration by Substitution

The following are the 5 steps for using the integration by substitution metthod:

- Step 1: Choose a new variable u
- Step 2: Determine the value dx
- Step 3: Make the substitution
- · Step 4: Integrate resulting integral
- Step 5: Return to the initial variable x

Unconstrained optimization: Multivariate functions

The following are the steps for finding a solution to an unconstrained optimization problem:

Condition	Minimum	Maximum
FOCs or necessary conditions SOCs or sufficient conditions	$f_1 = f_2 = 0$ $f_{11} > 0$, $f_{22} > 0$, and $f_{11}.f_{22} > (f_{12})^2$	$f_1 = f_2 = 0$ $f_{11} < 0, f_{22} < 0, \text{ and}$ $f_{11}, f_{22} > (f_{12})^2$
	Inflection point	
	$f_{11} < 0$, $f_{22} < 0$, and $f_{11} f_{22} < (f_{12})^2$ or $f_{11} < 0$, $f_{22} < 0$, and $f_{11} f_{22} < (f_{12})^2$	
	Saddle point	
	$f_{11} > 0$, $f_{22} < 0$, and $f_{11} \cdot f_{22} < (f_{12})^2$, or $f_{11} < 0$, $f_{22} > 0$, and $f_{11} \cdot f_{22} < (f_{12})^2$	
	Inconclusive	
	$f_{11}f_{22} = (f_{12})^2$	

Derivative Rules for Exponential Functions

$$\frac{d}{dx}(e^{z}) = e^{z}$$

$$\frac{d}{dx}(a^{x}) = a^{x} \ln a$$

$$\frac{d}{dx}(e^{x(x)}) = e^{x(x)}g'(x)$$

$$\frac{d}{dx}(a^{x(x)}) = \ln(a) a^{x(x)} g'(x)$$

Derivative Rules for Logarithmic Functions

$$\frac{d}{dx}(\ln x) = \frac{1}{x}, x > 0$$

$$\frac{d}{dx}\ln(g(x)) = \frac{g'(x)}{g(x)}$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}, x > 0$$

$$\frac{d}{dx}(\log_a g(x)) = \frac{g'(x)}{g(x) \ln a}$$

Integration by Parts

The formula for the method of integration by parts is:

$$\int u dv = u \cdot v - \int v du$$

There are three steps how to use this formula:

- Step 1: identify u and dv
- Step 2: compute u and du
- Step 3: Use the integration by parts formula

Unconstrained optimization: Univariate functions

The following are the steps for finding a solution to an unconstrained optimization problem:

Step 1: Find the critical value(s), such that:

$$f'(a) = 0$$

• Step 2: Evaluate for relative maxima or minima

o If
$$f''(a) > 0 \rightarrow minima$$

o If
$$f''(a) > 0 \rightarrow \text{maxima}$$

Constrained Optimization

The following are the steps for finding a solution to a constrained optimization problem using the Langrage technique:

- Step 1: Set up the Langrage equation
- Step 2: Derive the First Order Equations
- Step 3: Solve the First Order Equations
- Step 4: Estimate the Langrage Multiplier